Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis.
نویسندگان
چکیده
Fibroblast growth factor (FGF) signaling mutations are a frequent contributor to craniofacial malformations including midfacial anomalies and craniosynostosis. FGF signaling has been shown to control cellular mechanisms that contribute to facial morphogenesis and growth such as proliferation, survival, migration and differentiation. We hypothesized that FGF signaling not only controls the magnitude of growth during facial morphogenesis but also regulates the direction of growth via cell polarity. To test this idea, we infected migrating neural crest cells of chicken embryos with replication-competent avian sarcoma virus expressing either FgfR2(C278F), a receptor mutation found in Crouzon syndrome or the ligand Fgf8. Treated embryos exhibited craniofacial malformations resembling facial dysmorphologies in craniosynostosis syndrome. Consistent with our hypothesis, ectopic activation of FGF signaling resulted in decreased cell proliferation, increased expression of the Sprouty class of FGF signaling inhibitors, and repressed phosphorylation of ERK/MAPK. Furthermore, quantification of cell polarity in facial mesenchymal cells showed that while orientation of the Golgi body matches the direction of facial prominence outgrowth in normal cells, in FGF-treated embryos this direction is randomized, consistent with aberrant growth that we observed. Together, these data demonstrate that FGF signaling regulates cell proliferation and cell polarity and that these cell processes contribute to facial morphogenesis.
منابع مشابه
Homozygosity Mapping and Targeted Sanger Sequencing Identifies Three Novel CRB1 (Cumbs homologue 1) Mutations in Iranian Retinal Degeneration Families
Background: Inherited retinal diseases (IRDs) are a group of genetic disorders with high degrees of clinical, genetic and allelic heterogeneity. IRDs generally show progressive retinal cell death resulting in gradual vision loss. IRDs constitute a broad spectrum of disorders including retinitis pigmentosa and Leber congenital amaurosis. In this study, we performed genotyping studies to identify...
متن کاملCRB1-Related Leber Congenital Amaurosis: Reporting Novel Pathogenic Variants and a Brief Review on Mutations Spectrum
Background: Leber congenital amaurosis (LCA) is a rare inherited retinal disease causing severe visual impairment in infancy. It has been reported that 9-15% of LCA cases have mutations in CRB1 gene. The complex of CRB1 protein with other associated proteins affects the determination of cell polarity, orientation, and morphogenesis of photoreceptors. Here, we report three novel pathogenic varia...
متن کاملA Mechanism Underlying the Electrical Polarity Detection of Sensitive Plant, Mimosa Pudica
Natural indicators of the electrical polarity of a direct current (DC) source is limited to semiconductor based diodes and transistors. Recently a novel bio-natural indicator of the polarity of a DC source have been reported. Mimosa Pudica or sensitive plant is found to be a natural detector of a DC source polarity, however the mechanism underlying this phenomenon is not known. This paper aims ...
متن کاملDiaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis.
Formins are key regulators of actin nucleation and elongation. Diaphanous-related formins, the best-known subclass, are activated by Rho and play essential roles in cytokinesis. In cultured cells, Diaphanous-related formins also regulate cell adhesion, polarity and microtubules, suggesting that they may be key regulators of cell shape change and migration during development. However, their esse...
متن کاملFGF Signaling Regulates Cytoskeletal Remodeling during Epithelial Morphogenesis
Changes in the cytoskeletal architecture underpin the dynamic changes in tissue shape that occur during development. It is clear that such changes must be coordinated so that individual cell behaviors are synchronized; however, the mechanisms by which morphogenesis is instructed and coordinated are unknown. After its induction in non-neural ectoderm, the inner ear undergoes morphogenesis, being...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 22 25 شماره
صفحات -
تاریخ انتشار 2013